Laminin modification subretinal bio-scaffold remodels retinal pigment epithelium-driven microenvironment in vitro and in vivo
نویسندگان
چکیده
Advanced age-related macular degeneration (AMD) may lead to geographic atrophy or fibrovascular scar at macular, dysfunctional retinal microenvironment, and cause profound visual loss. Recent clinical trials have implied the potential application of pluripotent cell-differentiated retinal pigment epithelial cells (dRPEs) and membranous scaffolds implantation in repairing the degenerated retina in AMD. However, the efficacy of implanted membrane in immobilization and supporting the viability and functions of dRPEs, as well as maintaining the retinal microenvironment is still unclear. Herein we generated a biomimetic scaffold mimicking subretinal Bruch's basement from plasma modified polydimethylsiloxane (PDMS) sheet with laminin coating (PDMS-PmL), and investigated its potential functions to provide a subretinal environment for dRPE-monolayer grown on it. Firstly, compared to non-modified PDMS, PDMS-PmL enhanced the attachment, proliferation, polarization, and maturation of dRPEs. Second, PDMS-PmL increased the polarized tight junction, PEDF secretion, melanosome pigment deposit, and phagocytotic-ability of dRPEs. Third, PDMS-PmL was able to carry a dRPEs/photoreceptor-precursors multilayer retina tissue. Finally, the in vivo subretinal implantation of PDMS-PmL in porcine eyes showed well-biocompatibility up to 2-year follow-up. Notably, multifocal ERGs at 2-year follow-up revealed well preservation of macular function in PDMS-PmL, but not PDMS, transplanted porcine eyes. Trophic PEDF secretion of macular retina in PDMS-PmL group was also maintained to preserve retinal microenvironment in PDMS-PmL eyes at 2 year. Taken together, these data indicated that PDMS-PmL is able to sustain the physiological morphology and functions of polarized RPE monolayer, suggesting its potential of rescuing macular degeneration in vivo.
منابع مشابه
Morphological changes in injured retinal pigment epithelium and photoreceptor cells after transplantation of stem cells into subretinal space
Introduction: Degenerative retinal diseases are main cause of irreversible blindness. Stem cells therapy is a promising way in these diseases. Therefore, mesenchymal stem cells because of its safety can produce degenerated cells and can play important role in treatment. The aim of this study was to examine morphological changes in injured retinal pigment epithelium (RPE) and photoreceptor cells...
متن کاملThe extracellular matrix of human retinal pigment epithelial cells in vivo and its synthesis in vitro.
The production of extracellular matrix material by retinal pigment epithelium (RPE) may influence or mediate some of the many important functions of this tissue. Using immunohistochemical staining techniques, the extracellular matrix surrounding the RPE in vivo and the components produced by RPE in vitro have been investigated. Frozen sections of eye bank eyes showed antigen specific staining f...
متن کاملInvestigation of Differentiated Embryonic Stem Cells Growth on Optimized Porous Polymeric Bed with Fuzzy System
Introduction: Age-related macular degeneration (AMD) is one of the retina diseases in which retinal pigment epithelium cells are degraded and lead to blindness. Available treatments only slow down the progression of it. In this study, human embryonic stem cells (hESCs) differentiated into retinal pigment epithelium cells were cultured on a polycaprolactone scaffold. Methods: The optimization o...
متن کاملRPE and neuronal differentiation of allotransplantated porcine ciliary epithelium-derived cells
PURPOSE Cell replacement has the potential to be applied as a therapeutic strategy in retinal degenerative diseases such as retinitis pigmentosa and age-related macular degeneration (AMD) for which no adequate pharmacological and surgical treatments are currently available. Although controversial, the use of ciliary epithelium (CE)-derived cells is supported by evidence showing their differenti...
متن کاملNeural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study
Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016